Posts tagged HIV treatment
Mutating HIV Into Extinction
Mutating HIV into Extinction: One Answer to the Dilemma of HIV
In the late 1990’s a group of scientists and researchers faced with the dilemma of HIV and its resistance to a cure, decided to try to force the virus to over-mutate. The idea was to cause HIV to mutate at a rate much greater than the average HIV cell normally does, thus making the cells weaker and more prone to being eradicated. Essentially, they were attempting to cure people by mutating HIV into extinction. Many thought this approach would ultimately prove fruitless, but they pressed on.
Fast forward to 2011 and we find that, indeed, the group has developed a drug that causes rapid mutation in HIV cells. In the lab the drug forced a mutation explosion such that the HIV cells could no longer produce enough protein to survive. This essentially ‘killed’ the virus (although, technically, viruses are not alive in the first place, which is one of the reasons they are so difficult to eliminate). In clinical trials, however, the mutation was not great enough to cause the test patients’ HIV cells to collapse.
In a new study, released in July in Proceedings of the National Academy of Sciences (PNAS), the researchers discovered how the drug – currently known as KP1212 – was able to cause the HIV cells to mutate beyond their normal rate. Armed with this new knowledge, they are confident that they will be able to strengthen the effects of the drug and eliminate the HIV cells on a permanent basis. If they are successful we are talking about an actual cure for HIV.
HIV cells normally mutate quite frequently due to the way HIV reproduces. HIV makes copies of its genetic material, which is very error-prone and unstable, in a rapid mutation that actually helps the virus cells evade elimination from both the body’s immune system and man-made drugs. If HIV can essentially be forced into overdrive (roughly double the normal mutation rate), it will cause weaknesses that will result in the immediate elimination of HIV. Or, at the very least, cause the virus to become highly susceptible to drug elimination. This kind of forced over-mutation can, and in some cases already does, work for other viruses. For example, this is how Ribavirin works in patients with the hepatitis C virus. Similarly, some of the drugs developed for certain strands of influenza work in the same way. All of this good news suggests that we could be on the road to mutating HIV into extinction.
Soy Sauce And HIV
Soy Sauce and HIV: Japanese Condiment Sheds New Light
Antiretroviral drug therapies are the key treatments used against HIV today. Such therapies have proven effective and have turned the tide on the virus increasing both life expectancy and quality of life. Yet, it is common for patients suffering from HIV to develop a resistance to some of the therapies of choice. This can be a real problem as substitute therapies are usually harsher and not quite as effective. Soy sauce and HIV, four words that we wouldn’t usually see in combination, may present a solution.
A few years ago, a Japanese company was looking to enhance the flavor of their soy sauce. The discovery of a new compound led to further investigation. It turns out that what they had found was a compound similar to what is currently used in antiviral therapies. The difference with this compound and typical therapies for HIV is in how the compound works against HIV and, especially, in its ability to escape detection from the virus.
The new compound, EFdA, is a nucleoside analogue that tricks the virus and halts reproduction. Compounds such as the ones used in treatment look like the building blocks used by HIV to replicate and spread. The imposter compounds, however, thwart this process thus stunting the spread of the virus. Benefits of EFdA include its ability to remain unnoticed by the virus. Unlike presently used molecules, HIV has not been able to resist their attacks.
Ongoing research continues to show good results. The complexity of its structure is currently the focus of study. There is a sort of ‘key’ that unlocks the compound and sets it off to do its job. Figuring out how the compound is structured will help researchers unlock its potential and put it to use. It is hoped that this will spawn newer, more effective treatments that can last for years without the virus developing resistance. Soy sauce and HIV, who would have known?
A World Without AIDS
A World Without AIDS: How Far Off?
If you are middle-aged or older, you may remember a world without AIDS. After all, it didn’t become a commonly known or understood disease until it started taking the lives of some famous individuals in the 1980s. Today, it is a worldwide epidemic with more than 35 million HIV-positive individuals across the globe. With we ever see a world without AIDS again? That was the question posed at a convention held this past year.
Researchers and top physicians gathered from around the world to discuss the steps involved in getting rid of HIV and AIDS for good. Hopes are high because of the emergence of a few cases of cured individuals. In fact, the first man ever cured from the disease addressed the audience of doctors and researchers, inspiring them to reach their ultimate goal. However, while we wait for the dream of an HIV free world to come about, what else is being done for those who have the disease and what is being done to reduce transmission?
Antiretroviral treatments exist today that allow people with HIV to live a normal lifespan. Of course, this has led to other previously unknown complications of the disease. Now that HIV no longer quickly advances to AIDS, cutting a person’s life short, doctors are discovering that HIV can cause many secondary problems. One of these complications is a series of neurological problems.
Other issues involve the fact that many HIV-positive people around the world live in poor countries. Some of these countries can’t afford proper screening to identify HIV-positive individuals. Others don’t have the refrigeration needed for various treatments. Additionally, most of these nations can’t afford to provide treatment for people who can’t afford it themselves.
This means that, at least for now, the war on HIV is about preventing its spread. This means education for those in the highest risk categories for becoming infected. It also means developing regular and affordable screening for all. These are some of the goals that major contributors to the cause—such as the Bill and Melinda Gates Foundation—are working towards.
In the meantime, it is important for everyone to follow safe sex practices to avoid contracting HIV. It also involves a willingness to get tested. Finally, it means sticking closely to a treatment regimen if you are infected with the disease. This is what individuals can do to play a role in eliminating HIV and AIDS for good. It is a wonderful goal: to once again see a world without AIDS.
HIV Adaptation
HIV Adaptation: Three Decades On
Ongoing studies of how new treatments are performing against HIV are a mainstay of research. Ideas and theories for new treatments and vaccines are continually being studied and debated. Now, three decades since HIV broke onto the scene in North America, one group decided it was time for an investigation into two different areas: First, to find out just how the virus adapts to humans and, second, to see if the virus has changed since it was first introduced. The idea required extensive research on HIV adaptation and it also involved considerable back tracking. However, the effort paid off.
How HIV responds to current drug therapies has been well documented. However, exactly how HIV adapts to its host, humans, has never before been looked into. Going back nearly thirty years, and retrieving important molecular information on HIV, was a tedious task. Nevertheless, in spite of the challenges, the team found what they needed. Based on these findings, it is clear that HIV has adapted over the last couple of decades to humans. What was the process involved? And, what does it mean for us today?
First, the virus infects the host and begins to multiply. This process does not go unnoticed by the host’s immune system, which then immediately dispatches help. This internal fight helps keep the virus in check. Current drug therapies help too. After years of fighting, the immune system can tire out. As time passes, and the virus becomes accustomed to its host, it also begins to adapt to the onslaught brought on by the immune system. After enough time passes, the invader can become quite adept at evading the immune attacks. This is very bad for the host, who has lost the ability to naturally protect itself from the virus.
HIV adaptation has begun, but at this point, the adaptation has been minor. In fact, these changes are so minimal that researchers are confident that current therapies, and vaccines in development, will still be effective. Knowing that the virus can adapt and change is important, as researchers will remain alert to this and adjust research and strategies accordingly.
Truvada And Sexually Risky Behavior
Truvada Proves Effective in HIV Prevention
Researchers have wanted to take a closer look into how and why progress has been made in the battle against HIV. Antiretroviral therapy has helped to lower the viral load for thousands of HIV-positive patients, and life expectancy has also increased dramatically in recent years. Most of this is thanks to Truvada, but medical researchers worry that overconfidence in the therapy might promote an increase in unsafe sexual behavior. Researchers questioned whether patients using Truvada might feel so protected that they would exhibit riskier practices.
Truvada can be used as a protection for those at risk for infection, as well as for treating an existing one. Clinical studies conducted over the last few years looked into the effectiveness of the drug, and discovered that risk of infection was reduced by nearly 90%. While researchers were happy with these findings, they wanted to be sure that this effectiveness did not become a false sense of security for those taking it. This type of behavior is known as risk compensation.
Trials were designed to determine how sexual behaviors changed before and after taking Truvada. 2500 people participated in the trial. Half received Truvada, and the other half a placebo. There was no observed increase in risky behavior. Contrary to what they expected, infections continued decreasing. Researchers believe that the counseling and education that accompanied the therapy helped to increase awareness. This type of education continues to be encouraged, as does the use of Truvada. Overall, scientists are pleased with the positive results so far seen by this pioneer drug treatment. It has proven to be effective without increasing risky sexual behavior in those taking it.